15108次浏览

抛物线焦点

抛物线焦点

抛物线焦点定义平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。抛物线焦点坐标公式方程的一般形式:x^=2py(p>0),焦点坐标是(p/2,0)抛物线过焦点的弦长焦点弦公式2p/sina^2证明:设抛物线为y^2=2px(p>0),过焦点F(p/2,0)的弦直线方程为y=k(x-p/2),直线与抛物线交于A(x1,y1),B(x2,

目录

1. 抛物线焦点定义

平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。

2. 抛物线焦点坐标公式

方程的一般形式:x^=2py(p>0),焦点坐标是(p/2,0)

3. 抛物线过焦点的弦长

焦点弦公式2p/sina^2

证明:设抛物线为y^2=2px(p>0),过焦点F(p/2,0)的弦直线方程为y=k(x-p/2),直线与抛物线交于A(x1,y1),B(x2,y2)

联立方程得k^2(x-p/2)^2=2px,整理得k^2x^2-p(k^2+2)x+k^2p^2/4=0

所以x1+x2=p(k^2+2)/k^2

由抛物线定义,AF=A到准线x=-p/2的距离=x1+p/2, BF=x2+p/2

所以AB=x1+x2+p=p(1+2/k^2+1)=2p(1+1/k^2)=2p(1+cos^2/sin^2a)=2p/sin^2a

相关阅读
返回顶部