5015次浏览

不等式与不等式组

不等式与不等式组

不等式与不等式组知识点不等式:1.不等式:用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式.凡是用不等号连接的式子都叫做不等式.常用的不等号有“<”、“>”、“≤”、“≥”、“≠”.另外,不等式中可含未知数,也可不含未知数. 2.不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个

目录

1. 不等式与不等式组知识点

不等式:

1.不等式:用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式.

凡是用不等号连接的式子都叫做不等式.常用的不等号有“<”、“>”、“≤”、“≥”、“≠”.另外,不等式中可含未知数,也可不含未知数.

2.不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

3.解不等式:求不等式的解集的过程,叫做解不等式。

4.用数轴表示不等式的解集。

用数轴表示不等式的解集时,要注意“两定”:

一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;

二是定方向,定方向的原则是:“小于向左,大于向右”.

6、不等式的解和解集的区别和联系:不等式的解是一些具体的值,有无数个,用符号表示;不等式的解集是一个范围,用不等号表示.不等式的每一个解都在它的解集的范围内.

7、不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项要变号;②两边都乘、除同一个数,要注意只有乘、除负数时,不等号方向才改变.

不等式组:

(1) 一元一次不等式组的定义:

几个含有同一个未知数的一元一次不等式组合在一起,就组成了一个一元一次不等式组.

(2) 概念解析

形式上和方程组类似,就是用大括号将几个不等式合起来,就组成一个一元一次不等式组.但 与方程组也有区别,在方程组中有几元一般就有几个方程,而一元一次不等式组中不等式的个数可以是两个及以上的任意几个

(1)一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.

(2)解不等式组:求不等式组的解集的过程叫解不等式组.

(3)一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.

方法与步骤:

①求不等式组中每个不等式的解集;

②利用数轴求公共部分. 解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.

一元一次不等式组的整数解

(1)利用数轴确定不等式组的解(整数解).

解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.

(2)已知解集(整数解)求字母的取值.

一般思路为:先把题目中除未知数外的字母当做常数看待解不等式组或方程组等,然后再根据题目中对结果的限制的条件得到有关字母的代数式,最后解代数式即可得到答案.

由实际问题抽象出一元一次不等式组

由实际问题列一元一次不等式组时,首先把题意弄明白,在此基础上找准题干中体现不等关系的语句,根据语句列出不等关系.往往不等关系出现在“不足”,“不少于”,“不大于”,“不超过”等这些词语出现的地方.所以重点理解这些地方有利于自己解决此类题目.

一元一次不等式组的应用

对具有多种不等关系的问题,考虑列一元一次不等式组,并求解.

一元一次不等式组的应用主要是列一元一次不等式组解应用题,其一般步骤:

(1)分析题意,找出不等关系;

(2)设未知数,列出不等式组;

(3)解不等式组;

(4)从不等式组解集中找出符合题意的答案;

(5)作答.

2. 不等式的基本性质

①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:若a>b,那么a±m>b±m;

②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即: 若a>b,且m>0,那么

am>bm或am>bm;

③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即: 若a>b,且m<0,那么am<bm或am<bm;

3. 不等式(组)的解法

解不等式组,可以先把其中的不等式逐条算出各自的解集,然后分别在数轴上表示出来。

以两条不等式组成的不等式组为例,

①若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”

②若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”

③若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集。若x表示不等式的解集,此时一般表示为a<x<b,或a≤x≤b。此乃“相交取中”

④若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解。此乃“向背取空”

相关阅读
返回顶部