12141次浏览

实数

实数

实数定义有理数和无理数统称为实数。实数分类(1)整数,有限小数,无限小数为实数和(2)0和正数,负数为实数1)可以分为整数,分数整数又可分为正整数,0,负整数分数又可分为正分数,负分数2)可以分为正数,0,负数正数又可分为正整数,正分数负数又可分为负整数,负分数实数运算法则1、加法法则:(1)同号两数相加,取相同的符号,并把它

目录

1. 实数定义

有理数和无理数统称为实数。

2. 实数分类

(1)整数,有限小数,无限小数为实数和

(2)0和正数,负数为实数

1)可以分为整数,分数

整数又可分为正整数,0,负整数

分数又可分为正分数,负分数

2)可以分为正数,0,负数

正数又可分为正整数,正分数

负数又可分为负整数,负分数

3. 实数运算法则

1、加法法则:

(1)同号两数相加,取相同的符号,并把它们的绝对值相加;

(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

可使用①加法交换律:两个数相加,交换加数的位置,和不变.即:

②加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,和不变.即:

2、减法法则:

减去一个数等于加上这个数的相反数。即a-b=a+(-b)

3、乘法法则:

(1)两数相乘,同号取正,异号取负,并把绝对值相乘。

(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。

(3)乘法可使用①乘法交换律:两个数相乘,交换因数的位置,积不变.即: .

②乘法结合律 :三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.即: 。③分配律 : 一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即: .

4、除法法则:

(1)两数相除,同号得正,异号得负,并把绝对值相除。

(2)除以一个数等于乘以这个数的倒数。即

(3)0除以任何数都等于0,0不能做被除数。

5、乘方:  所表示的意义是n个a相乘,即

正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.

乘方与开方互为逆运算。

6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。

相关阅读
返回顶部